رياضيات11 فصل أول

الحادي عشر خطة جديدة

icon

الاقترانات الأسية

الاقتران الأسي: هو اقتران على الصورةf(x)=abx حيث a و b عددان حقيقيان و a0 , b0 , b>0

ملاحظة: لتمثيل الاقتران الأسي بيانيا

1) نقوم بإنشاء جدول قيم

2) نعين الأزواج المرتبة الناتجة من الجدول في المستوى الإحداثي .

3) نقوم بالتوصيل بين النقاط الممثلة بمنحنى متصل.

أولا: تمثيل الاقتران الأسي على الصورة f(x)=abx حيث a>0 , b>1 وتعرف خصائصه

 

ثانيا: المثيل البياني للاقتران الأسي على الصورة f(x)=abx حيث 0<b<1 , a>0  وتعرف خصائصه

 

خصائص الاقتران الأسي

التمثيل البياني للاقتران الأسي المعرف على الصورة f(x)=abx حيث b, a عددان حقيقيان و a0 , b1 , b>0 له الخصائص الآتية:

مجال الاقتران هو مجموعة الأعداد الحقيقية R.

مدى الاقتران هو مجموعة الأعداد الحقيقية الموجبة R+ أي الفترة (0,).

يكون الاقتران متزايدًا إذا كانت b>1

يكون الاقتران متناقصًا إذا كانت 0<b<1

للاقتران خط تقارب أفقي هو المحور x.

يقطع الاقتران المحور y في نقطة واحدة هي (0,a)، ولا يقطع المحور x.

اقتران واحد لواحد.

 

النمو والاضمحلال

اقتران النمو الأسي: إذا ازدادت كمية بنسبة مئوية ثابتة خلال فترات زمنية متساوية فإنها تزداد بشكل أسي ولإيجاد مقدار هذه الكمية التي زدادت بعد t من الزمن يمكن استعمال الاقتران الآتي: A(t)=a(1+r)t حيث:

A(t) هو اقتران النمو الأسي، t الفترة الزمنية ، a الكمية الابتدائية ، r النسبة المئوية لنمو في فترات زمنية محددة ويسمى أساس العبارة الأسية (1+r) عامل النمو.

اقتران النمو الأسي هو كل اقتران أسي يتزايد بنسبة مئوية  ثابتة في فترات زمنية  متساوية.

 

اقتران الاضمحلال الأسي: إذا نقصت كمية بنسبة مئوية ثابتة خلال فترات زمنية متساوية فإنها تنقص بشكل أسي ولإيجاد مقدار هذه الكمية التي نقصت بعد t من الزمن يمكن استعمال الاقتران الآتي:A(t)=a(1-r)t حيث:

A(t) هو اقتران الاضمحلال الأسي، t الفترة الزمنية ، a الكمية الابتدائية ، r النسبة المئوية للاضمحلال في فترات زمنية محددة ويسمى أساس العبارة الأسية (1-r) عامل الاضمحلال.

اقتران الاضمحلال الأسي اقتران أسي يتناقص بنسبة مئوية ثابتة في فترات زمنية متساوية.

 

الاقتران الأسي الطبيعي: عندما يكون الأساس في الاقتران الأسي هو العدد النيبيري الغير النسبي e=2.718281828.... فإن الاقتران f(x)=ex يسمى الاقتران الأسي الطبيعي وله الخصائص نفسها للاقتران f(x)=ax