رياضيات فصل ثاني

التوجيهي علمي

icon

التكامل بالتعويض الدرس الثاني :

أجد كلاً من التكاملات الآتية :

أتحقق من فهمي صفحة 32 .

 a  4x2x3-5 dx       Solution:       let u=x3-5 dx=du3x2      4x2x3-5 dx= 4x2u12du3x2                              =43 x2 u12dux2                              =43u12du=43×23u32                             =89(x3-5)32+c  

 

 

    b  12xexdx       Solution:       let u=x dx=du12x=2x du     12xexdx= 12xeu×2x du                              = 12xeu×2x du                              = eudu= eu                              =ex+c

 

 c  (lnx)3xdx       Solution:       let u=lnx dx=du1x=x du     (lnx)3xdx= u3xx du                       = u3xx du                       = u3du =u44                       =14(lnx)4+c

 

 d  cos(lnx)xdx       Solution:       let u=lnx dx=du1x=x du     cos(lnx)xdx= cos uxx du                       = cos uxx du                       = cos u du =sin u                       =sin(lnx)+c

    

e  cos45x sin5x dx       Solution:       let u=cos5x dx=du-5sin5x     cos45x sin5x dx= u4sin5xdu-5sin5x                                =-15 u4sin5xdusin5x                                =-15 u4du=-125u5                                =-125(cos5x)5+c 

 

f  x2x2dx       Solution:       let u=x2 dx=du2x     x2x2dx= x2udu2x                    =12 x2udux                   =12 2udu=2uln2                   =2x2ln2+c

أتحقق من فهمي صفحة 34 .

أجد كلاً من التكاملات الآتية :

a  x1+2xdx       Solution:       let u=2x+1 dx=du222x+1=2x+1 du=u du                                 dx=u du     but x=u2-12     x2x+1dx= xuu du                              = xuu du                              = x du= =u2-12 du                              =12(13u3-u)                              =16(2x+1)3-2x+1+c  ملاحظة : يمكن حل هذا السؤال (لاحقاً) بالأجزاء       

         

b  x7(x4-8)3dx       Solution:       let u=x4-8dx=du4x3     but x4=u-8      x7(x4-8)3dx= x7u3 du4x3                              =14  x7 x4u3 dux3                              = x4 u3du          but x4=u-8                              = (u-8) u3du                               = (u4-8u3)du                               =15u5-84u4                               =15(x4-8)5-84(x4-8)4+c

        

c  e3x(1-ex)2dx       Solution:       let u=1-exdx=du-ex     but ex=1-u      e3x(1-ex)2dx=e3xu2 du-ex                           =-ex2u2du                 but ex=1-u                          =-1-u2u2du                          =-1-2u+u2u2du                          = (u-2-2u+1)du                           =-1u-2lnu+u                          = -11-ex-2ln(1-ex)+1-ex+c

أتحقق من فهمي صفحة 35 .           

أجد كلاً من التكاملات الآتية :

a  1x+x3dx       Solution:       let u=x13 u3=x                        3u2du=dx      but x=u3        1x+x13dx = 1u3+u3 x23du                              =3  u2u3+udu                              =32 2uu2+1du                              =32ln(u2+1)                              =32ln(x23+1)+c The fast solution:        1x+x13dx=  x-13x-13(x+x13)dx                            = 32 23x-13x23+1dx =32ln(x23+1)+c

 

b  x (1-x)23dx       Solution:       let u=(1-x)23 dx=du23(1-x)-13=32(1-x)13du       but 1-x=u32      x=1-u32       x (1-x)23dx= x u×32(1-x)13du                                =32 (1-u32) u×(u32)13du                                =32 (1-u32)u32du                                =32 (u32-u3)du                              =32(25u52-14u4)                              =35u52-38u4                              =35(1-x)106-38(1-x)83+c                                               

أتحقق من فهمي صفحة 37 .

يُمثل الاقتران p(x) ، سعر القطعة بالدينار ، تستعمل في أجهزة الحاسوب ، حيث  x   عدد القطع المبيعة بالمئات .

إذا كان p'(x)=-135x9+x2  هو معدل تغيّر سعر هذه القطعة ، فأجد p(x) . علماً بأن سعر القطعة الواحدة

هو 30 JD عندما يكون عدد القطع المعيبة منها   400  قطعة .  

 Solution:         p'(x)=-135x9+x2  p(x)=-135x9+x2dx        let u=9+x2 dx=du2x    -135x9+x2dx=-135xudu2x                           =-1352xudux                           =-1352 u-12du                           =-135 u12                      p(x)=-135(9+x2)12+c                     p(400)=-135(9+(400)2)12+c=30                    c=30+135(9+(400)2)54031.5                     p(x)=-1359+x2+54031.5

    

أتحقق من فهمي صفحة 39 .

أجد كلاً من التكاملات الآتية :

        a  sin3x dx       Solution:      let sin3x=sin2x×sinx                   =(1-cos2x)sinx      let u=cosx  dx=du-sinx        sin3x dx = (1-cos2x)sinx dx                        = (1-u2)sinx du-sinx                        = (1-u2)sinx du-sinx                        =- (1-u2)du                        =-u+13u3                        =-cosx +13cos3x+c 

 

       b  cos5x sin2x dx       Solution:      let cos5x=cos3x×cos2x                     =cos3x×(1-sin2x)     let u=sinx dx=ducosx       cos5x sin2x dx = cos3x(1-sin2x)sin2x dx                               = cos3x(1-u2)u2ducosx                               = cos2x(1-u2)u2du                               = (1-u2)(1-u2)u2du                               = (1-2u2+u4)u2du                               = (u2-2u4+u6)du                               =13u3-25u5+17u7                               =13sin3x-25sin5x+17sin7x +c 

أتحقق من فهمي صفحة 41 .

أجد كلاً من التكاملات الآتية : 

        a  tan4x dx       Solution:      let tan4x=tan2x×tan2x                   =(sec2x-1)tan2x                   =tan2x sec2x-tan2x     let u=tanx dx=dusec2x        tan4x dx= (tan2x sec2x-tan2x)dx                      = (tan2x sec2x)dx- (tan2x)dx                      = (tan2x sec2x)dx- (sec2x-1)dx                      = (u2 sec2x)dusec2x-tanx +x                      = (u2 sec2x)dusec2x-tanx +x                      = u2du -tanx +x                      =13u3 -tanx +x                      =13tan3x -tanx +x+c

        b  cot5x dx       Solution:      let cot5x=cot2x×cot3x                   =(csc2x-1)cot3x                   =cot3x csc2x-cot2x×cotx                   =cot3x csc2x-(csc2x-1)×cotx                   =cot3x csc2x-cotx csc2x-cotx       let u=cotx dx=-ducsc2x       cot5x dx= (cot3x csc2x-cotx csc2x)dx-cotx dx                        =- u3x csc2x ducsc2x+ u csc2xducsc2x-cosxsinx dx                        =- u3x csc2x ducsc2x+ u csc2xducsc2x-ln(sinx)                       =- u3du+ u du-ln(sinx)                       =-14u4 +12u2 -ln(sinx)                       =-14cot4x +12cot2x -ln(sinx)+c

           

c  sec4x tan6x dx       Solution:      let sec4x tan6x= sec2x sec2x tan6x                   =sec2x( tan2x+1) tan6x                   =sec2x tan8x +sec2x tan6x      let u=tanx dx=dusec2x      sec4x tan6x dx= (sec2x u8)dusec2x- (sec2x u6)dusec2x                                = (sec2x u8)dusec2x- (sec2x u6)dusec2x                               = u8du- u6du                               =19u9 +17u7                                =19tan9x +17tan7x +c 

 

أتحقق من فهمي صفحة 43.   

أجد كلاً من التكاملات الآتية :

                    a  02xx+13 dx       Solution:       let u=x+1 dx=du           x=u-1       xx+13 dx = x u3du                             = (u-1) u3du                             = (u4-u3)du                             =15u5-14u4                             =15(x+1)5-14(x+1)4 2  0                             =15((3)5-(1)5)-14((3)4-(1)4)                             =2425-20=1625

               

b  0π3tanx secx secx +2 dx       Solution:       let u=secx +2 dx=dusecx tanx       tanx secx secx +2 dx = tanx secx u12 dusecx tanx                                                 = tanx secx u12 dusecx tanx                                                 = u12du                                                 =23u32                                                 =23(secx +2)32  π3  0                                                 =23(4)32 -23(3)32                                                  =163-23

    

أتدرب وأحل المسائل .

أجد كلاً من التكاملات الآتية : 

             1  x2(2x3+5)4 dx       Solution:       let u=2x3+5 dx=du6x2      x2(2x3+5)4 dx =x2u4 du6x2                                  =16x2u4 dux2                                  =16 u4du                                 =130u5                                 =130(2x3+5)5+c

               

2   x2x+3 dx       Solution:       let u=x+3 dx=du      but x=u-3            x2=u2-6u+9        x2x+3 dx =  x2u12 dx                                =  (u2-6u+9)u12 dx                                  =  (u52-6u32+9u12 )du                                                  =27 u52-125u32+6u12                                  =27(x+3)52-125(x+3)32+6(x+3)12+c

      

            3   x(x+2)3 dx       Solution:       let u=x+2 dx=du      but x=u-2         x(x+2)3dx =  x u3du                                =  (u-2)u3du                                  =  (u4-2u3 )du                                =15 u5-24u4