رياضيات فصل ثاني

التوجيهي علمي

icon

التكامل بالتعويض الدرس الثاني :

أجد كلاً من التكاملات الآتية :

أتحقق من فهمي صفحة 32 .

 a  4x2x3-5 dx       Solution:       let u=x3-5 dx=du3x2      4x2x3-5 dx= 4x2u12du3x2                              =43 x2 u12dux2                              =43u12du=43×23u32                             =89(x3-5)32+c  

 

 

    b  12xexdx       Solution:       let u=x dx=du12x=2x du     12xexdx= 12xeu×2x du                              = 12xeu×2x du                              = eudu= eu                              =ex+c

 

 c  (lnx)3xdx       Solution:       let u=lnx dx=du1x=x du     (lnx)3xdx= u3xx du                       = u3xx du                       = u3du =u44                       =14(lnx)4+c

 

 d  cos(lnx)xdx       Solution:       let u=lnx dx=du1x=x du     cos(lnx)xdx= cos uxx du                       = cos uxx du                       = cos u du =sin u                       =sin(lnx)+c

    

e  cos45x sin5x dx       Solution:       let u=cos5x dx=du-5sin5x     cos45x sin5x dx= u4sin5xdu-5sin5x                                =-15 u4sin5xdusin5x                                =-15 u4du=-125u5                                =-125(cos5x)5+c 

 

f  x2x2dx       Solution:       let u=x2 dx=du2x     x2x2dx= x2udu2x                    =12 x2udux                   =12 2udu=2uln2                   =2x2ln2+c

أتحقق من فهمي صفحة 34 .

أجد كلاً من التكاملات الآتية :

a  x1+2xdx       Solution:       let u=2x+1 dx=du222x+1=2x+1 du=u du                                 dx=u du     but x=u2-12     x2x+1dx= xuu du                              = xuu du                              = x du= =u2-12 du                              =12(13u3-u)                              =16(2x+1)3-2x+1+c  ملاحظة : يمكن حل هذا السؤال (لاحقاً) بالأجزاء       

         

b  x7(x4-8)3dx       Solution:       let u=x4-8dx=du4x3     but x4=u-8      x7(x4-8)3dx= x7u3 du4x3                              =14  x7 x4u3 dux3                              = x4 u3du          but x4=u-8                              = (u-8) u3du                               = (u4-8u3)du                               =15u5-84u4                               =15(x4-8)5-84(x4-8)4+c

        

c  e3x(1-ex)2dx       Solution:       let u=1-exdx=du-ex     but ex=1-u      e3x(1-ex)2dx=e3xu2 du-ex                           =-ex2u2du                 but ex=1-u                          =-1-u2u2du                          =-1-2u+u2u2du                          = (u-2-2u+1)du                           =-1u-2lnu+u                          = -11-ex-2ln(1-ex)+1-ex+c

أتحقق من فهمي صفحة 35 .           

أجد كلاً من التكاملات الآتية :

a  1x+x3dx       Solution:       let u=x13 u3=x                        3u2du=dx      but x=u3        1x+x13dx = 1u3+u3 x23du                              =3  u2u3+udu                              =32 2uu2+1du                              =32ln(u2+1)                              =32ln(x23+1)+c The fast solution:        1x+x13dx=  x-13x-13(x+x13)dx                            = 32 23x-13x23+1dx =32ln(x23+1)+c

 

b  x (1-x)23dx       Solution:       let u=(1-x)23 dx=du23(1-x)-13=32(1-x)13du       but 1-x=u32      x=1-u32       x (1-x)23dx= x u×32(1-x)13du                                =32 (1-u32) u×(u32)13du                                =32 (1-u32)u32du                                =32 (u32-u3)du                              =32(25u52-14u4)                              =35u52-38u4                              =35(1-x)106-38(1-x)83+c                                               

أتحقق من فهمي صفحة 37 .

يُمثل الاقتران p(x) ، سعر القطعة بالدينار ، تستعمل في أجهزة الحاسوب ، حيث  x   عدد القطع المبيعة بالمئات .

إذا كان p'(x)=-135x9+x2  هو معدل تغيّر سعر هذه القطعة ، فأجد p(x) . علماً بأن سعر القطعة الواحدة

هو 30 JD عندما يكون عدد القطع المعيبة منها   400  قطعة .  

 Solution:         p'(x)=-135x9+x2  p(x)=-135x9+x2dx        let u=9+x2 dx=du2x    -135x9+x2dx=-135xudu2x                           =-1352xudux                           =-1352 u-12du                           =-135 u12                      p(x)=-135(9+x2)12+c                     p(400)=-135(9+(400)2)12+c=30                    c=30+135(9+(400)2)54031.5                     p(x)=-1359+x2+54031.5

    

أتحقق من فهمي صفحة 39 .

أجد كلاً من التكاملات الآتية :

        a  sin3x dx       Solution:      let sin3x=sin2x×sinx                   =(1-cos2x)sinx      let u=cosx  dx=du-sinx        sin3x dx = (1-cos2x)sinx dx                        = (1-u2)sinx du-sinx                        = (1-u2)sinx du-sinx                        =- (1-u2)du                        =-u+13u3                        =-cosx +13cos3x+c 

 

       b  cos5x sin2x dx       Solution:      let cos5x=cos3x×cos2x                     =cos3x×(1-sin2x)     let u=sinx dx=ducosx       cos5x sin2x dx = cos3x(1-sin2x)sin2x dx                               = cos3x(1-u2)u2ducosx                               = cos2x(1-u2)u2du                               = (1-u2)(1-u2)u2du                               = (1-2u2+u4)u2du                               = (u2-2u4+u6)du                               =13u3-25u5+17u7                               =13sin3x-25sin5x+17sin7x +c 

أتحقق من فهمي صفحة 41 .

أجد كلاً من التكاملات الآتية : 

        a  tan4x dx       Solution:      let tan4x=tan2x×tan2x                   =(sec2x-1)tan2x                   =tan2x sec2x-tan2x     let u=tanx dx=dusec2x        tan4x dx= (tan2x sec2x-tan2x)dx                      = (tan2x sec2x)dx- (tan2x)dx                      = (tan2x sec2x)dx- (sec2x-1)dx                      = (u2 sec2x)dusec2x-tanx +x                      = (u2 sec2x)dusec2x-tanx +x                      = u2du -tanx +x                      =13u3 -tanx +x                      =13tan3x -tanx +x+c

        b  cot5x dx       Solution:      let cot5x=cot2x×cot3x                   =(csc2x-1)cot3x                   =cot3x csc2x-cot2x×cotx                   =cot3x csc2x-(csc2x-1)×cotx                   =cot3x csc2x-cotx csc2x-cotx       let u=cotx dx=-ducsc2x       cot5x dx= (cot3x csc2x-cotx csc2x)dx-cotx dx                        =- u3x csc2x ducsc2x+ u csc2xducsc2x-cosxsinx dx                        =- u3x csc2x ducsc2x+ u csc2xducsc2x-ln(sinx)                       =- u3du+ u du-ln(sinx)                       =-14u4 +12u2 -ln(sinx)                       =-14cot4x +12cot2x -ln(sinx)+c

           

c  sec4x tan6x dx       Solution:      let sec4x tan6x= sec2x sec2x tan6x                   =sec2x( tan2x+1) tan6x                   =sec2x tan8x +sec2x tan6x      let u=tanx dx=dusec2x      sec4x tan6x dx= (sec2x u8)dusec2x- (sec2x u6)dusec2x                                = (sec2x u8)dusec2x- (sec2x u6)dusec2x                               = u8du- u6du                               =19u9 +17u7                                =19tan9x +17tan7x +c 

 

أتحقق من فهمي صفحة 43.   

أجد كلاً من التكاملات الآتية :

                    a  02xx+13 dx       Solution:       let u=x+1 dx=du           x=u-1       xx+13 dx = x u3du                             = (u-1) u3du                             = (u4-u3)du                             =15u5-14u4                             =15(x+1)5-14(x+1)4 2  0                             =15((3)5-(1)5)-14((3)4-(1)4)                             =2425-20=1625

               

b  0π3tanx secx secx +2 dx       Solution:       let u=secx +2 dx=dusecx tanx       tanx secx secx +2 dx = tanx secx u12 dusecx tanx                                                 = tanx secx u12 dusecx tanx                                                 = u12du                                                 =23u32                                                 =23(secx +2)32  π3  0                                                 =23(4)32 -23(3)32                                                  =163-23

    

أتدرب وأحل المسائل .

أجد كلاً من التكاملات الآتية : 

             1  x2(2x3+5)4 dx       Solution:       let u=2x3+5 dx=du6x2      x2(2x3+5)4 dx =x2u4 du6x2                                  =16x2u4 dux2                                  =16 u4du                                 =130u5                                 =130(2x3+5)5+c

               

2   x2x+3 dx       Solution:       let u=x+3 dx=du      but x=u-3            x2=u2-6u+9        x2x+3 dx =  x2u12 dx                                =  (u2-6u+9)u12 dx                                  =  (u52-6u32+9u12 )du                                                  =27 u52-125u32+6u12                                  =27(x+3)52-125(x+3)32+6(x+3)12+c

      

            3   x(x+2)3 dx       Solution:       let u=x+2 dx=du      but x=u-2         x(x+2)3dx =  x u3du                                =  (u-2)u3du                                  =  (u4-2u3 )du                                =15 u5-24u4                                =15 (x+2)5-12(x+2)4+c 

             4   xx+4 dx       Solution:       let u=x+4 dx=du      but x=u-4        xx+4 dx =  x u-12du                                =  (u-4)u-12du                                  =  (u12-4u-12)du                                =23 u32-8u12                                =23(x+4)32-8(x+4)12+c  

5  e sinxcosx dx       Solution:       let u=sinx dx=ducosx       e sinx cosx dx= eu cosxducosx                                =eu cosxducosx                                = eudu=eu +c                                 =e sinx +c

     

6  e3x1+exdx       Solution:       let u=1+exdx=duex     but ex=u-1       e3x1+exdx= e3xu duex                        = ex3udu                 but ex=u-1                         = u-13udu                          = u3-3u2+3u -1udu                          =  (u2-3u+3-1u)du                           =13u3-32u2+3u-lnu                          =13(1+ex)3-32(1+ex)2-ln(1+ex)+3ex+3+c

7  sec4x dx       Solution:      let sec4x=sec2x×sec2x                   =(tan2x+1)sec2x                   =tan2x sec2x+sec2x       let u=tanx dx=dusec2x        sec4x dx= (tan2x sec2x+sec2x)dx                      = (tan2x sec2x)dx+ (sec2x)dx                      = (tan2x sec2x)dx+tanx                      = (u2 sec2x)dusec2x+tanx                       = (u2 sec2x)dusec2x+tanx                        = u2du +tanx                        =13u3 +tanx                        =13sec3x +tanx +c

         

8  tanxcos2xdx       Solution:      let 1cos2x=sec2x    tanx sec2xdx=       let u=tanx dx=dusec2x        sec4x dx= (tanx sec2x)dx                          = (u2 sec2x)dusec2x                          = (u2 sec2x)dusec2x                          = u2du                           =13u3 =13sec3x +c

 

 9  sin(lnx)xdx       Solution:       let u=lnx dx=du1xdx=x du         sin(lnx)x dx=  sinux x du                                =  sinux x du                                = sinu du                                =-cosu =-cos(lnx)+c

10  sin2x(4+sin2x)3dx       Solution:       let u=sin2x     dx=du2sinxcosx=dusin2x       sin2x(4+sin2x)3dx=sin2x u3dusin2x                                           =sin2x u3dusin2x                                           =u3du=u44+c                                            =sin8x4+c

                     

11  2ex-2e-xex+e-x2dx       Solution:       let u=ex+e-xdx=duex-e-x      2ex-2e-xex+e-x2dx=2 ex-e-xu2duex-e-x                           =2 ex-e-xu2duex-e-x                           =2 u-2du                           =-2u=-2ex+e-x+c

    

12   -x(x+1)x+1 dx       Solution:        -x(x+1)x+1 dx=-  x(x+1)32 dx       let u=x+1 dx=du      and   x=u-1        x(x+1)32 dx =  x u32du                                =  (u-1)u32du                                  =  (u52-u32)du                                =27 u72-25u52                                =-27(x+1) 72+25(x+1)52+c             

         

13   x2 x+103 dx       Solution:       let u=x+10 dx=du      but x=u-10            x2=u2-20u+100        x2 x+103 dx = x2u13du                                 = (u2-20u+100)u13du                                 =  (u73-20u43+100u13)du                                 =310 u103-607u73+75u43                                 =310(x+10 )103-607(x+10 )73+75(x+10 )43+c

              

14  sec2x2 tan7x2 dx       Solution:       let u=tanx2 dx=2dusec2x2           sec2x2 tan7x2 dx=2 sec2x2 u7 dusec2x2                                           =2 sec2x2 u7 dusec2x2                                            =2 u7du                                            =14u8 =14tan8x +c

       

15  sec3x+esinxsecxdx       Solution:          sec3x+esinxsecxdx= sec2x dx+ cosx esinxdx      I1= sec2x dx=tanx      I2= cosx esinxdx       let u=sinx dx=ducosx        cosx esinxdx= cosx euducosx                               = cosx euducosx                               =  eudu                                =eu=esinx            sec3x+esinxsecxdx= I1+ I2                                        =tanx+esinx+c

  

16 (1+sinx3)cos3x dx       Solution: cos3x=cosx.cos2x    but  cos2x=1-sin2x (1+sinx3)cos3x dx= cosx(1+sinx3)(1-sin2x) dx       let u=sinx dx=ducosx  cosx(1+sinx3)(1-sin2x) dx= cosx(1+u13)(1-u2) ducosx                                                    = cosx(1+u13)(1-u2) ducosx                                                    = (1+u13)(1-u2)du                                                    = (1+u13-u2-u73)du                                                    =u+34u43-u33-310u103                                                    =sinx+34(sinx)43-sin3x3-3(sinx)10310+c

 

17 sinx sec5x dx       Solution: sinx sec5x dx= sinx cos5x dxlet u=cosx dx=-dusinx  sinx cos5x dx= sinx u5 ×-dusinx                  = sinx u5 ×-dusinx=-duu5                     =14u4=14cos4x+c 

 

18 sinx+tanxcos3xdx       Solution:       but    sinx=tanxsecx  , and   secx=1cosx sinx+tanxcos3xdx= sec3x (tanxsecx+tanx)dx                          =( sec2x tanx+sec3x tanx) dx                          =(secx tanx)( secx +sec2x) dxlet u=secx dx=dusecx tanx                          =(secx tanx)( u +u2) dusecx tanx                          =(secx tanx) ( u +u2)dusecx tanx                          = ( u +u2)du                          =u22+u33=sec2x2+sec3x3+c 

 

19 1e sin(πlnx)x dx       Solution:      let  u=πlnxdx=duπx=xπdu    sin(πlnx)xdx= sinuxxπdu                          = sinuxxπdu                          =1π sinu du=-1πcosu                           =-1πcos(πlnx)e   1                           =-1π(cos(πlne)-cos(πln1))                           =-1π(cos(π2)-cos(0))                           =-1π(0-1)=1π

                  

20 0π2 x sinx2 dx       Solution:       let u=x2 dx=du2x         x sinx2 dx= x sinu du2x                           =12 x sinu dux                           =12 sinu du=-12cosu                           =-12cosu=-12cosx2 π2  0                            =-12(cos(π2)2-cos(0)2)                           =-12(cos(π2)2-1)

    

21  01 x3x2+1 dx       Solution:       let u=x2+1 dx=du2x      and  x2=u-1        x3x2+1 dx=  x3u-12du2x                             =12  x2u-12du                             =12 (u-1)u-12du                             =12 (u12-u-12)du                             =13 u32-u12   =13(x2+1)32-(x2+1)12  1  0                               =13((2)32-1)-((2)12-1)                              =83+23-2

 

22 0π3 sec2x tan5x dx       Solution:       let u=tanx dx=dusec2x            sec2x tan5x dx=  sec2x u5dusec2x                                = sec2x u5 dusec2x                                = u5du                                =16u6 =16tan6x π3  0                                =16(tan6(π3)-0)=92

 

23 02 (x-1)e(x-1)2 dx       Solution:       let u=(x-1)2dx=du2(x-1)       (x-1)e(x-1)2dx= (x-1)eudu2(x-1)                                     =12 (x-1) eudu(x-1)                                       =12  eudu                                       =12eu =12 e(x-1)2  2  0                                       =12(e- e)=0

 

24  14 x+2x dx       Solution:       let u=x+2 dx=2xdu        x+2x dx =ux2xdu                                 =2 udu                                  =2 (u12)du=43 u32                                =43(x+2)32  4  0=43(8-27)

 

25  0110x(x3+1)2 dx       Solution:        10x(x3+1)2 dx= 10x((x)3+1 )2 dx      let u=x dx=du12x=2xdu=2u du       10x((x)3+1 )2 dx= 10u(u3+1 )22u du                                 =20 u2(u3+1 )2 du  Now let v=u3+1 du=dv3u2                                =20 u2v2dv3u2                                =203 u2v2dvu2                                =203 u2v2dvu2                                =203 v-2dv                                =-203v=-203(u3+1)                                             =-103((x)3+1)   1  0=-206+203 =103        

      

26  0π6 2cosxsinx dx       Solution:       let u=cosxdx=-dusinx        2cosxsinx dx=- 2usinxdusinx                               =- 2usinxdusinx                               =- 2udu                               =-2uln2=-2cosxln2 π6  0                               =-2cos(π6)-2cos(0)ln2 =1-232ln2  

 

27 π4π2 csc2x cot5 dx       Solution:       let u=cotx dx=-ducsc2x            csc2x cot5 dx=- csc2x u5 ducsc2x                                    =- csc2x u5 ducsc2x                                    =- u5 du                                     =-16u6 =-16cot6x  π2  π4                                  =-16(cot6(π2)-cot6(π4))                                  =-16(0-1)=16

                أجد مساحة المنطقة المظللة في كلٍ من التمثيلات البيانية الآتية : 

28            Solution:             A=-106x(x2+3)3 dx+01 6x(x2+3)3 dx                =2016x(x2+3)3dx             let u=x2+3dx=du2x            2 6x(x2+3)3=2 6x u3du2x                                   =6 x u3dux                                   =6 u3du                                   =32u4=32(x2+3)4   1   0                                    =32(256-81)=262.5

 

29            Solution:             A=24 x(x-1)3 dx             A=24 x(x-1)-3 dx             let u=x-1dx=du                  x=u+1            x(x-1)-3 dx= xu-3 du                                     = (u+1)u-3 du                                     = (u-2+u-3)du                                     =-1u-12u2    4    2                                    =-(14-12)-(132-18)                                    =14+332=1132 

       

30            Solution:             A=-10x ex2dx+02 x ex2dx             let u=x2dx=du2x            A=10x eudu2x+04x eudu2x               =1210x eudux+1204x eudux               =12 eu    0    1+12 eu    4    0               =|12(e0-e1)|+12(e4-e0)=e4+e-22  

         

31            Solution:             A=0π62x cos(x2+π6)dx             let u=x2+π6dx=du2x            A= 2x cosudu2x               = 2x cosudu2x=sinu               =sin(x2+π6)   π6      0               =sin(2π6)-sin(0+π6)=32-12=3-12

         في كلٍ مما يأتي المشتقة الأولى للاقتران f(x)  ونقطة يمر بها منحنى y=f(x) .

         إستعمل المعلومات المعطاة لإيجاد قاعدة الاقتران . 

              32    f'(x)=2x(4x2-10)2  ,  (2 , 10)            Solution:            f(x)= 2x(4x2-10)2dx             let u=4x2-10dx=du8x             f(x)= 2x u2du8x                      =14 x u2dux=112 u3            f(x)=112 (4x2-10)3+c           but f(2)=10 to solve  c            f(x)=112 (216)+c=10                       18+c=10  c=-8           Then        f(x)=112 (4x2-10)3-8

        

                    33    f'(x)=x2e-0.2x3  ,  (0 , 32)            Solution:            f(x)= x2e-0.2x3dx             let u=-0.2x3-10dx=du-0.6x2             f(x)=  x2eudu-0.6x2                   =-10.6  x2eudux2                   =-10.6eu=-10.6e-0.2x3+c             f(x)=-10.6e-0.2x3+c           but f(0)=32 to solve  c             f(0)=-10.6e0+c=32                      -53+c=32  c=196            Then     f(x)=-10.6e-0.2x3+196

يبين الشكل المجاور جزءا من منحنى الاقتران  f(x)=x(x-2)4   

34   أجد إحداثيي نقطة تماس الاقتران مع محور x .

من الشكل x = 2 .

 

 

35  أجد مساحة المنطقة المحصورة بين منحنى الاقتران ومحور x .

 Solution:             A=02x (x-2)4dx             let u=x-2dx=du                  x=u+2            A= (u+2)u4du              = (u5+2u4)du              =16 u6+25u5              =16(x-2)6+25(x-2)5  2  0              =-646+645=6430

36 يتحرك جسيم في خط مستقيم ، وتعطى سرعته المتجهة بالاقتران :  v(t)=sinwt cos2wt

حيث t  الزمن بالثواني ، و  v  سرعته المتجهة بالمتر لكل ثانية ، و w   ثابت .

إذا انطلق الجسيم من نقطة الأصل ، فأجد موقعه بعد t ثانية .

Solution: v(t) dt= sinwt cos2wt dt s(t)= sinwt cos2wt dt let u=coswt   dt=-duw sinwt  sinwt cos2wt dt=- sinwt u2 duw sinwt                              =- sinwt u2 duw sinwt                              =-1w u2 du                              =-u33w+c =-cos3wt3w+c   to solve c  s(t)=-cos3wt3w+c    s(t)=-cos3w(0)3w+c =0  c= 13w  s(t)=13w-cos3wt3w    

           

37   يمثل الاقتران C(t) تركيز دواء في الدم بعد t دقيقة من حقنه في جسم مريض ،

           حيث C  مقاسة بالملغرام لكل سنتمتر مكعب (cm3/mg ) .

   إذا كان تركيز الدواء لحظة حقنه في جسم المريض  0.5mg/cm3   ،

                       وأخذ يتغير بمعدل  C'(t)=-0.01e-.001t(1+e-0.01t)2 . فأجد C(t)

Solution: C(t)=-0.01e-.001t(1+e-0.01t)2dt let u=1+e-0.01t  dt=-due-0.01t C(t)=-0.01e-.001tu2due-0.01t      =-0.01e-.001tu2due-0.01t      =-0.011u2du =-0.01 u-2du                              =0.01u=0.011+e-0.01t+c  but  C(0)=0.5 to solve c C(t)=0.011+e-0.01t+c C(0)=0.011+e-0.01(0)+c=0.5           0.012+c=0.5           0.005+c=0.5    c=0.495C(t)=0.011+e-0.01t+0.495

38 أجد قيمة ln3ln4 e4xex-2 dx ، ثم أكتب الإجابة بالصيغة  ab+c lnd

                       حيث a .b . c. d  ثوابت صحيحة  

 

         Solution:       e4xex-2 dx = (ex)4ex-2 dx       let u=exdx=duex=duu        (ex)4ex-2 dx= u4u-2 duu                           = u3u-2du                           = (u2+2u+4+8u-2)du                           = (u33+u2+4u+8ln(u-2))                            = (e3x3+e2x+4ex+8ln(ex-2))  ln4  ln3                            = (e3ln43+e2ln4+4eln4+8ln(eln4-2))-(e3ln33+e2ln3+4eln3+8ln(eln3-2))                             =(643+16+16+8ln(2))-(273+9+12)                             =(373+11+8ln(2))=703+8ln2

39إذا كان  f'(x)=tanx ، وكان   f(3)=5 ، فأثبت أن:   f(x)=lncos3cosx+5  

                f'(x)=tanx      , f(3)=5       Solution:       f(x)= tanx dx = sinxcosx dx                                  =-ln(cosx)+c      but   f(3)=5  5=-ln(cos3)+c                          c=5+ln(cos3)       f(x)=-ln(cosx)+5+ln(cos3)             =lncos3cosx+5            

  تبرير : إذا كان الشكل المجاور يمثل منحنى الاقتران   f(x)=3cosx1+sinx  

 فأجيب عن الاسئلة التالية تباعاً :    

 40 أجد قيمة كل من A . B . C .D .  

     Solution:       f(x)=3cosx1+sinx=0       3cosx=0        Or    1+sinx=0            cosx=0    x=-π2  , x=π2             1+sinx=0            sinx=-1  x=3π2 then A=-π2 , B=0   and C=π2now to  solve  D:f(x)=3cosx1+sinxf(0)=3cos(0)1+sin(0)=3

  41  أجد مساحة المنطقة المظللة .

                    Solution:       A=A1+A2=2A1  because  of symetric       A1=-π2π23cosx1+sinxdx     let u=1+sinx  dx=ducosx     A1= 3cosx(1+sinx)12dx         = 3cosx(u)12ducosx=3  u12du         =2 u32=2 (1+sinx)32      π2  -π2         =2 (1+sin(π2))32-2 (1+sin(-π2))32         =28      A=2A1=48            

42  أبين أن للمنطقة R1, R2 المساحة نفسها .

       Solution:       A1=-π2π23cosx1+sinxdx               =28       A2=π23π23cosx1+sinxdx                  =|-28| =28

 

43 تحد: أجد قيمة

  116xx34+1 dx       Solution:      xx34+1 dx=x12x34+1 dx       let u=x34+1dx=du34x-14=43x14du      But x34=u-1      x12x34+1 dx= x12u ×43x14du                          =43 x34u du=43 u-1u du                          =43 (1-1u) du                          =43(u-lnu)                          =43(x34+1-ln(x34+1))  16   1                          =43(9-ln(9))-43(2-ln(2))                           =12 -43ln(9)-83+43ln(2)                          =283+43ln29

 44 تبرير : أذا كان f  متصلا فأثبت أن :  0π2f(cosx)dx= 0π2f(sinx)dx

       Solution:      For   0π2f(cosx)dx       let u=cosx   dx=du-sinx      But u2=cos2x=1-sin2x           sinx=1-u2      When   x=0   u=1                   x=π2   u=0       0π2f(cosx)dx=10f(u)du-sinx                                =01f(u)1-u2du    .... **       For  0π2f(sinx)dx       let v=sinx   dx=dvcosx      But v2=sin2x=1-cos2x           cosx=1-v2      When   x=0   v=0                   x=π2   v=1       0π2f(sinx)dx=01f(v)dvcosx                                 =01f(v)1-v2dv   .... **  Both sieds have same formula   therefor they are equels .

 45 تبرير : أذا كان a . b عددين حقيقين موجبين فأثبت أن :01xa(1-x)bdx= 01xb(1-x)adx

       Solution:       let u=1-x   dx=du            x=1-u      When   x=0   u=1                   x=1   u=0       01xa(1-x)bdx=10(1-u)a(u)bdu                                =10 ub(1-u)adu

تحد: أجد قيمة  كل من التكاملات الآتية:

46   1xlnx(ln(lnx)) dx       Solution:       let u=lnxdx=du1x=xdu      1xlnx(ln(lnx)) dx= 1x u(ln(u))xdu                                     = 1xu(ln(u))xdu                                     = 1u ln(u)du  Now let v=ln(u) du=dv1u=u dv               1u ln(u)du = 1u vu dv                                    = 1u vu dv                                    = 1vdv =ln v                                    =ln(lnu)=ln(ln(lnx))+c

             

47   sin2x(1+sinx)3 dx       Solution:         2sinx cosx(1+sinx)3 dx       let u=1+sinxdx=ducosx=xdu      and  sinx=u-1     2sinx cosx(1+sinx)3 dx= 2sinx cosx u3ducosx                                              =2 sinx cosx u3ducosx                                             =2 (u-1) u3du                                             =2 (u4-u3)du                                             =25u5 -24u4+c                                             =25(1+sinx)5 -24(1+sinx)4+c

 

48 1x-x3dx     Solution:  let u6=x   6u5du=dx       u3=x       u2=x3    1x-x3dx=1u3-u26u5du                          =6u3u-1du                          = (6u2+6u+6 +6u-1)du                          =2u3+3u2+6u+6ln(u-1)                          =2x+3x3+6x6+6ln(x6-1)+c

Jo Academy Logo