رياضيات 7 فصل ثاني

السابع

icon

حلول أسئلة أتحقق من فهمي 

3)

                V = Bh                        صيغة حجم المنشور 

       (l × w)h =                           تعويض الأبعاد (القاعدة مستطيلة)

   7× (8 ×15) =

             840 =                           نجد الناتج 

إذنْ، حجمُ المنشورِ يساوي 840cm3

 

4)

                      V = Bh                       صيغة حجم المنشور 

=12×4×10h=12×4×10×15=300                        تعويض الأبعاد(القاعدة مثلث) ، ثم أجد الناتج   

إذنْ، حجمُ المنشورِ يساوي 300mm3

 

أحواضٌ: أَجِدُ حجمَ حَوضِ الأسماكِ المجاورِ. 

 

                  V = Bh                       صيغة حجم المنشور                      

        (l × w)×h =                         تعويض الأبعاد (القاعدة مستطيلة)

     (6 ×14)×10 =

                840 =                          نجد الناتج 

إذنْ، حجمُ الحوض 840dm3


أَجِدُ حجمَ الأُسطوانةِ المجاوِرةِ، وَأُقرّبُ إجابتي لِقربِ جزءٍ مِنْ مئةٍ.

           V=πr2 h                     صيغة حجم الأسطوانة

=π(13.252 )(7.8)4299.88                 بتعويض الأبعاد ، واستخدام الآلة الحاسبة أجد الناتج 

إذنْ، حجمُ الأُسطوانةِ يساوي 4299.88cm3 تقريبًا.

 

كوبٌ: كَمْ سَنتيمترًا مكعَّبًا مِنَ القهوةِ يتّسعُ لَهُ الكوبُ المجاوِرُ.

أجد حجم الكوب :

         V=πr2 h                     صيغة حجم الأسطوانة

=π(3.52 )(8)307.72                       بتعويض الأبعاد ، واستخدام الآلة الحاسبة أجد الناتج 

إذنْ، يتسع الكوب لـ 307.72cm3 من القهوة تقريبًا.



حلول أسئلة أتدرب وأحل المسائل 

أَجِدُ حجمَ كلِّ مجسّمٍ ممّا يأتي:

1)

حجم منشور قاعدته على شكل مثلث 

V=Bh   =12×8×6×5   =120cm3                         تعويض الأبعاد(القاعدة مثلث) ، ثم أجد الناتج         

       

2)

حجم منشور قاعدته على شكل مستطيل 

V=Bh   =3×4×3   =36m3                       تعويض الأبعاد(انتبه للإرتفاع الحقيقي للمنشور 3m) ، ثم أجد الناتج     

 

3)

حجم أسطوانة 

 V=πr2 h    =π(0.82 )(8)    16.08m3                       بتعويض الأبعاد ، واستخدام الآلة الحاسبة أجد الناتج 

 

4)

حجم أسطوانة 

 V=πr2 h    =π(0.52 )(25)    19.63m3                       بتعويض الأبعاد ، واستخدام الآلة الحاسبة أجد الناتج 

 

أَجِدُ حجمَ كلِّ مجسَّمٍ ممّا يأتي:

5) منشورٌ قاعدتُهُ مربعةٌ طولُ ضِلعِها 4m ، وَارتفاعُهُ 15m

                V = Bh                        صيغة حجم المنشور 

           (S2)h =                           تعويض الأبعاد 

      15× (42) =

        240m2 =                           نجد الناتج 

 

6) أُسطوانةٌ طولُ قطرِها 21.4dm وَارتفاعُه 33.7dm

 V=πr2 h    =π(10.72 )(33.7)    12115.10 dm3                تعويض الأبعاد 

 

حوضُ سباحةٍ: يبيّن الشكلُ المجاورُ حوضَ سباحةٍ على شكلِ أُسطوانةٍ، طولُ قطرِها 5.4m وَارتفاعُهُا 120cm 

7) أَجِدُ حجمَ الحوضِ.

 V=πr2 h    =π(2.72 )(1.2)     27.47 m3                تعويض الأبعاد (مع الإنتباه على توحيد وحدات القياس)


8) ما كمّيةُ الماءِ بِاللّيترِ الّتي يُمكنُ أنْ يتّسعَ لَها الحوضُ؟

27470 لتر                            (1m3=1000L)


9) ما المدةُ الزمنيّةُ الّتي يحتاجُها الحوضُ حتّى يمتلئَ إذا كانَتْ سرعةُ تعبئتِهِ 50L/min

2747050=549.4 min

 

أَجِدُ حجمَ كلِّ مجسَّمٍ ممّا يأتي:

10)

الحجم الكلي = حجم مجسم رباعي + حجم مجسم ثلاثي (قاعدته مثلث)

V=8×7×9+12×8×12-8×9  =684cm3

 

11)

الحجم الكلي = مجموع حجم المجسمين 

ٍV=5×4×9+6×2×9   =288cm3

 

أستعملُ المعلوماتِ الموضَّحةَ على كلِّ شكلٍ ممّا يأتي لإيجادِ البُعدِ المفقودِ: 

12)

من صيغة حجم منشور قاعدته على شكل مربع نجد الإرتفاع 

V=Bh608=82×hh=9.5 cm

 

13)

من صيغة حجم منشور قاعدته على شكل شبه منحرف 

V=Bh110=12×2×13+9×hh=5cm                    مساحة شبه المنحرف = مجموع القاعدتين × نصف الارتفاع 

 

14) أمطارٌ: أعودُ إلى فقرةِ (أستكشفُ) بدايةَ الدرسِ، وَأحلُّ المسألةَ.

نجد حجم الأنبوب 

 V=πr2 h    =π(2.52 )(30)    588.75cm3

 

15) تبريرٌ: ذوَّبَ كمالٌ منشورًا رباعيًّا مِنَ الشّمْعِ أبعادُهُ 10cm,9cm,20cm لتشيكلِ شمعاتٍ على شكلِ منشورٍ قاعدتُهُ مثلَّثةٌ كَما في الشكلِ المجاورِ. كَمْ شمعةً يستطيعُ كمالٌ أنْ يصنعَ مِنْ كمّيةِ الشمعِ الّتي لَدَيْهِ؟ أبرّرُ إجابتي.

حجم المنشور الرباعي قبل الإذابة 

V=10×9×20  =1800cm3

حجم الشمعة 

V=12×6×8×10  =240cm3

عدد الشمعات = كمية الشمع مقسوما على حجم الشمعة الواحدة

1800240=7.5

 

16) تبريرٌ: أتأملُ الشكلَ المجاورَ، ثمَّ أصفُ كيفَ يُمكنُني إيجادُ حجمِ الجسمِ المغمورِ بِالماءِ، مبررًا إجابتي، علمًا بأنَّ طولَ نصفِ قُطرِ قاعدةِ الدَّورَقِ 1.5cm ثمَّ أَجِدُ الحجمَ.

حجم المجسم المغمور = حجم الماء الزائد بعد الغمر 

 V=πr2 h    =π(1.52 )(2)    14.3cm3                      أجد الفرق بين الحجمين 

 

17) تبريرٌ: تتكوّنُ كلُّ مجموعةٍ مِنْ أوراقِ التذكيرِ المجاورةِ مِنْ 500 ورقةٍ. هلْ يوجَدُ اختلافٌ بينَ حجمَيِ المجموعتَينِ؟ أبرّرُ إجابتي، ثمّ أَجِدُ حجمَ كلِّ مجموعةٍ، 6 cm, 6 cm, 0.02 cm علمًا أنَّ أبعادَ الورقةِ الواحدةِ

لا يوجد اختلاف بين حجمي المجموعتين لأن لهما نفس الأبعاد 

حجم المجموعة = حجم الورق × عدد أوراق المجموعة 

V=6×6×0.02×500   =360cm3

 

18)تحدٍّ: منشورٌ قاعدتُهُ على شكلِ مستطيلٍ، وَأبعادُهُ أعدادٌ كلّيةٌ، وَمساحاتُ أوجُهِهِ 30cm, 40cm2, 48cmأَجِدُ حجمَ المنشورِ  موضِّحًا خُطواتِ الحلِّ.

من مساحات الأوجه أجد أبعاد المنشور 

40cm3=8×530cm3=5×648cm3=8×6     (5,6,8)

حجم المنشور الذي قاعدته على شكل مستطيل 

V=Bh  =5×6×8  =240cm3

 

19) أكتبُُ كيفَ أَجِدُ حجمَ منشورٍ ثلاثيٍّ؟

نجد مساحة القاعدة ثم نضرب المساحة بارتفاع المنشور فنحصل على الحجم.



حلول أسئلة كتاب التمارين 

أَجِدُ حجمَ كلِّ مجسَّمٍ ممّا يأتي:

1)

حجم منشور قاعدته على شكل مثلث 

V=Bh   =12×7×16×11   =616cm3

2)

حجم منشور قاعدته على شكل مستطيل 

V=Bh   =5×8×7    =280cm3

3)

حجم الاسطوانة 

 V=πr2 h    =π(82 )(13)    2613.8cm3

 

أستعملُ المعلوماتِ الموضَّحةَ على كلِّ شكلٍ ممّا يأتي لَِجِدَ البُعدَ المفقودَ:

4)

من حجم الأسطوانة أجد الارتفاع 

 V=πr2 h2000=π(72 )h    13cm

 

5)

من حجم المنشور الذي قاعدته مربع أجد الإرتفاع 

V=s2×h270=62×hh=7.5cm

 

6)

من حجم المنشور الذي قاعدته مثلث أجد ارتفاع المثلث 

480=12×10×x×12x=8cm

7) حافظةٌ: يبيّنُ الشكلُ المجاورُ حافظةً للماءِ الساخنِ، أَجِدُ كمّيّةَ الماءِ الّتي تتّسعُ لَها الحافظةُ.

أجد حجم الأسطوانة 

 V=πr2 h    =π(10.52 )×55    19049.83cm3

 

أَجِدُ حجمَ كلِّ مجسَّمٍ ممّا يأتي:

8) أُسطُوانةٌ طولُ قطرِها 24m وَارتفاعُها 28m 

 V=πr2 h    =π(122 )×28    12666.9m3

 

9) منشورٌ رباعيٌّ قاعدتُهُ مستطيلةُ الشكلِ، طولُهُا 25m وَعَرضُهُا 6m وَارتفاعُهُ 9m 

V=25×6×9  =1350m3

 

ملحٌ: يبيّنُ الشكلُ المجاورُ عُلبتَينِ لِحفظِ الملحِ:


10) أقارنُ بينَ حجمَيِ العلبتَينِ.

حجم العلبة التي على شكل منشور رباعي 

V=Bh   =5×10×15   =750cm3

حجم العلبة التي على شكل الأسطوانة 

 V=πr2 h    =π(4.22 )×13.5    748.13cm3

العلبة على شكل منشور رباعي أكبر من العلبة الأسطوانية 


11) أيُّ العُلبتَينِ أفضلُ مِنْ حيثُ التخزينُ وَالنقلُ وَالتوزيعُ؟ أبرّرُ إجابتي.

العلبة على شكل منشور رباعي لأنها الأكبر حجما لذلك فهي الأفضل من حيث التخزين والنقل والتوزيع 

 

12) تبريرٌ: حوضُ سمكٍ على شكلِ منشورٍ رباعيٍّ أبعادُهُ 45cm,30cm,25cm  تقولُ ريماسُ: (إذا أصبحَتْ أبعادُ حوضِ السمكِ مثلَيِ الأبعادِ الأصليةِ، فَإنَّنا نحتاجُ إلى مثلَيْ كمّيّةِ الماءِ لِملْءِ الحوضِ الجديدِ) هلْ ما تقولُهُ ريماسُ صحيحٌ؟ أبرّرُ إجابتي. 

حجم المنشور الأصلي 

V1=Bh   =45×30×25   =33750 cm3

حجم المنشور بعد الزيادة 

V2=Bh   =90×60×50   =270000 cm3V22V1

 

 

 

 

Jo Academy Logo